Memory
Consistency

Chris Rossbach

Outline for Today

e Questions?

* Administrivia
* Lab 3 looms large: Go go go!

* Agenda
* Memory Consistency
* Message Passing background
* Concurrency in Go
* Thoughts and guidance on Lab 3

* Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and | borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Memory Consistency

Memory Consistency

* Formal specification of memory semantics

e Statement of how shared memory will behave with multiple CPUs
* Ordering of reads and writes

Memory Consistency

* Formal specification of memory semantics

e Statement of how shared memory will behave with multiple CPUs
* Ordering of reads and writes

* Memory Consistency != Cache Coherence
* Coherence: propagate updates to cached copies
* Invalidate vs. Update

* Coherence vs. Consistency?
 Coherence: ordering of ops. at a single location
* Consistency: ordering of ops. at multiple locations

Consistency: Canonical Challenge

Initially, Flagl = Flag2 = ©
Pl P2
Flagl = 1 Flag2 = 1

if (Flag2 == 0) if (Flagl == 0)
enter CS enter CS

Consistency: Canonical Challenge

Initially, Flagl = Flag2 = ©

Pl P2

Flagl = 1 Flag2 = 1

if (Flag2 == 0) if (Flagl == 0)
enter CS enter CS

Can both P1 and P2 wind up in the

critical section at the same time?

Consistency: Canonical Challenge

Initially, Flagl Flag2 = © - P
L
ﬂ P_z Read 1

Read

Fljgz Write Flagl #3 Flzgl Write Flag2 4
Flagl = 1 Flag2 = 1 f & 2| "
if (Flag2 == 0) if (Flagl == 0) | Shared Bus
enter CS enter CS |
Flagl: 0 ST
Flag2: 0 Yy

Write Buffers
* P_0 write 2 queue op in write buffer, proceed

* P_Oread = look in write buffer,
* P_(x!=0)read = old value: write buffer hasn’t drained

Sequential Consistency

» Result of any execution is same
as if all operations execute on a
uniprocessor

* Operations on each processor
are totally ordered in the
sequence and respect program
order for each processor

Sequential Consistency

» Result of any execution is same
as if all operations execute on a
uniprocessor

* Operations on each processor
are totally ordered in the
sequence and respect program
order for each processor

Trying to mimic Uniprocessor semantics:
« Memory operations occur:

* Oneatatime

* In program order
e Read returns value of last write

Requirements for Sequential Consistency

Requirements for Sequential Consistency

* Program Order
* Processor’s memory operations must complete in program order

Requirements for Sequential Consistency

* Program Order
* Processor’s memory operations must complete in program order

* Write Atomicity
* Writes to the same location seen by all other CPUs
e Subsequent reads must not return value of a write until propagated to all
* Note: write atomicity = property of schedule: writes appear atomic

Requirements for Sequential Consistency

* Program Order
* Processor’s memory operations must complete in program order

* Write Atomicity

* Writes to the same location seen by all other CPUs
e Subsequent reads must not return value of a write until propagated to all
* Note: write atomicity = property of schedule: writes appear atomic

* Write acknowledgements are necessary
* Cache coherence provides these properties for a cache-only system

Requirements for Sequential Consistency

* Program Order
* Processor’s memory operations must complete in program order

* Write Atomicity
* Writes to the same location seen by all other CPUs
e Subsequent reads must not return value of a write until propagated to all
* Note: write atomicity = property of schedule: writes appear atomic

* Write acknowledgements are necessary
* Cache coherence provides these properties for a cache-only system

Disadvantages:

* Difficult to implement!
* Coherence to (e.g.) write buffers is hard

 Sacrifices many potential optimizations
e Hardware (cache) and software (compiler)
* Major performance hit

Sequential Consistency: Canonical Example

Initially, Flagl = Flag2 = ©
Pl P2
Flagl = 1 Flag2 = 1

if (Flag2 == 0) if (Flagl == 0)
enter CS enter CS

Sequential Consistency: Canonical Example

Initially, Flagl = Flag2 = ©

Pl P2

Flagl = 1 Flag2 = 1

if (Flag2 == 0) if (Flagl == 0)
enter CS enter CS

Can both P1 and P2 wind up in the
critical section at the same time?

In an SC system NO

Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a
P2 Wx)b P2: Wix)b
P3 R(x)b R(x)a P3. R(x)b R()a

Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2: Wx)b P2: Wb

P3. R(x)b R(x)a P3. R(x)b R()a
P4. R(x)b R(x)a P4. R(x)a R(x)b

* Why is this weaker than strict/strong?) (0)

Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2 Wb P2: Wix)b

P3 R(x)b R(x)a P3. R(x)b R()a

P4 R(x)b R(x)a P4 R(x)a R(x)b
* Why is this weaker than strict/strong?) (b

* Nothing is said about “most recent write”

More Consistency Motivation

Initially, A=B=0

How many possible final values of register1?

Pl P2 P3
A=1
if (A==1)
B=1
if (B==1)

registerl = A

More Consistency Motivation

Initially, A=B=0

How many possible final values of register1?

P1 P2 P3
A=1
if (A==1)
B=1
if (B==1)
registerl = A

Key issue:
* P2 and P3 may not see writes to A, B in the same order

* Implication: P3 can see B ==1, but A == 0 which isincorrect
e Wait! Why would this happen?

More Consistency Motivation

Initially, A=B=0

How many possible final values of register1?

Pl P2 P3
A=1
if (A==1) _
_ Sources of re-ordering:
B=1 Post-retirement store queues
if (B == 1) Load queues
. —_ 0-0-0 instruction processing
—A
regISterl Non-Uniform topologies

Key issue:
P2 and P3 may not see writes to A, B in the same order

* Implication: P3 can see B ==1, but A == 0 which isincorrect
e Wait! Why would this happen?

Compiler optimizations

Consistency:

Each “flavor” is some combination of
allowed/supported optimizations

Why Relax Consistency?

* Motivation, originally

e Allow in-order processors to overlap store latency with other work

* “Other work” depends on loads, so loads bypass stores using a store queue
PC (processor consistency), SPARC TSO, IBM/370

e Just relax read-to-write program order requirement

Subsequently

* Hide latency of one store with latency of other stores
» Stores to be performed OO0 with respect to each other

* Breaks SC even further
This led to definition of SPARC PSO/RMO, WO, PowerPC WC, Itanium
What's the problem with relaxed consistency?

e Shared memory programs can break if not written for specific cons. model

Relaxed Consistency Models

Relaxed Consistency Models

* Program Order relaxations (different locations)
s W—2>R;, W-2>W R—=>R/W

Relaxed Consistency Models

* Program Order relaxations (different locations)
s W—2>R;, W-2>W R—=>R/W

 Write Atomicity relaxations
e Read returns another processor’s Write early

Relaxed Consistency Models

* Program Order relaxations (different locations)
s W—2>R;, W-2>W R—=>R/W

 Write Atomicity relaxations
e Read returns another processor’s Write early

* Requirement: synchronization primitives for safety
* Fence, barrier instructions etc

Relaxed Consistency Models

* Program Order relaxations (different locations)
s W—2>R;, W-2>W R—=>R/W

 Write Atomicity relaxations
e Read returns another processor’s V.

° Requ,rement: Synch ron|zat|on pr| Relaxation W—R[W—~W[R—RW [Read Others’ | Read Own || Safety net
Order Order Order Write Early | Write Early
* Fence, barrier instructions etc v T | ” e —
TSO [20] v V] RMW
PC[13, 12] v N "/ RMW
| _Psopaol [v | v | | | || RMW STBAR
WO [5] N v N v synchronization
RCsc [13, 12] N v N v release, acquire, nsync,
RMW
RCpc [13, 12] N v N v v release, acquire, nsync,
RMW
Alpha [19] v v v v MB, WMB
RMO [21] v o v o various MEMBAR’s
PowerPC [17, 4] v v v v v SYNC

static inline void arch write lock(arch rwlock t *rw) {

asm volatile(LOCK PREFIX WRITE LOCK SUB(%1) x86
: :LOCK_PTR_REG (&rw->write), (RW_LOCK BIAS) :); }
* Program Order relaxations (different locations)
s W—2>R;, W-2>W R—=>R/W
* Write Atomicity relaxations
e Read returns another processor’s V.
° Requirement: Synchronization pr| Relaxation || W R | W - W | R - RW | Read Others’ | Read Own || Safety net
Order Order Order Write Early | Write Early
* Fence, barrier instructions etc — e | | ” LV | —
[14] N seralization instructions
TSO [20] YV ; RMW
PC[13, 12] v N "/ RMW
Cesopl [v [7 | || [/ [RMwsmax
WO [5] N v N v synchronization
RCsc [13, 12] N v N v release, acquire, nsync,
RMW
RCpc [13, 12] N v N v v release, acquire, nsync,
RMW
Alpha [19] i f i f MB, WMB
RMO [21] v o v o various MEMBAR’s
PowerPC [17. 4] Vi Y Vi Vi Y SYNC

https://elixir.bootlin.com/linux/v3.13/C/ident/arch_write_lock
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_rwlock_t
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/volatile
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PREFIX
https://elixir.bootlin.com/linux/v3.13/C/ident/WRITE_LOCK_SUB
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PTR_REG
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/write
https://elixir.bootlin.com/linux/v3.13/C/ident/RW_LOCK_BIAS

Relaxed Consistency Models

* Program Order relaxations (different locations)
s W—2>R;, W-2>W R—=>R/W

 Write Atomicity relaxations
e Read returns another processor’s V.

° Requ,rement: Synch ron|zat|on pr| Relaxation W—R[W—~W[R—RW [Read Others’ | Read Own || Safety net
Order Order Order Write Early | Write Early
* Fence, barrier instructions etc v T | ” e —
TSO [20] v V] RMW
PC[13, 12] v N "/ RMW
| _Psopaol [v | v | | | || RMW STBAR
WO [5] N v N v synchronization
RCsc [13, 12] N v N v release, acquire, nsync,
RMW
RCpc [13, 12] N v N v v release, acquire, nsync,
RMW
Alpha [19] v v v v MB, WMB
RMO [21] v o v o various MEMBAR’s
PowerPC [17, 4] v v v v v SYNC

Relaxed Consistency Models

° PQgLOrder relaxations (different locations)
s W=>R; W ->W; R—-> R/W

NS
essor’s
tion pri
etc

Relaxed Consistency Models

* Program Order relaxations (different locations)
s W—2>R;, W-2>W R—=>R/W

 Write Atomicity relaxations
e Read returns another processor’s V.

° Requ,rement: Synch ron|zat|on pr| Relaxation W—R[W—~W[R—RW [Read Others’ | Read Own || Safety net
Order Order Order Write Early | Write Early
* Fence, barrier instructions etc v T | ” e —
TSO [20] v V] RMW
PC[13, 12] v N "/ RMW
| _Psopaol [v | v | | | || RMW STBAR
WO [5] N v N v synchronization
RCsc [13, 12] N v N v release, acquire, nsync,
RMW
RCpc [13, 12] N v N v v release, acquire, nsync,
RMW
Alpha [19] v v v v MB, WMB
RMO [21] v o v o various MEMBAR’s
PowerPC [17, 4] v v v v v SYNC

Some Key Consistency Models

TSO: Total Store Order
e Stores are totally ordered, reads not
* Differs from PC by allowing early reads of processor’s own writes

PC: Processor consistency
* Writes from processor always respect program order
» Different processors may see different interleavings from different processors

RC: Release Consistency
* Key insight: only synchronization references need to be ordered

* Hence, relax memory for all other references
* Enable high-performance OO0 implementation

* Programmer labels synchronization references
* Hardware must carefully order these labeled references

e Labeling schemes:
» Explicit synchronization ops (acquire/release)
* Memory fence or memory barrier ops:
* All preceding ops must finish before following ones begin

Another Good SC Exercise

Initially, x=0,y=0

PO: P1
1. x=1; 1 a=y,;
2 y=1; 2 b=x;

What final values of (a, b) are possible under SC?

Another Good SC Exercise

Initially, x=0,y=0

PO: P1
1. x=1; 1 a=y,
2. y=1; 2 b=x;

What final values of (a, b) are possible under SC?

PC: Processor Consistency

* Writes from a single processor are received by all other processors in
the order they were issued

* Writes from different processors may be seen in a different order by
different processors

* Key idea:
* reflect reality of networks
* latency between nodes may be different

PC: Processor Consistency

* Writes from a single processor are received by all other processors in
the order they were issued

* Writes from different processors may be seen in a different order by
different processors

* Key idea:
* reflect reality of networks
* latency between nodes may be different

PO

[-

PC: Processor Consistency

* Writes from a single processor are received by all other processors in
the order they were issued

* Writes from different processors may be seen in a different order by
different processors

* Key idea:
* reflect reality of networks
* latency between nodes may be different

PO

[-

PC: Processor Consistency

* Writes from a single processor are received by all other processors in
the order they were issued

* Writes from different processors may be seen in a different order by
different processors

* Key idea:
* reflect reality of networks
* latency between nodes may be different

PC: Processor Consistency

* Writes from a single processor are received by all other processors in
the order they were issued

* Writes from different processors may be seen in a different order by
different processors

* Key idea:
* reflect reality of networks
* latency between nodes may be different

R:a,b,c,d, e f R:d,e,f,a,b,c‘

PC Example

Pl P2 P3

A=1; While (A==0); While (B==0);

B=1; Print A;

SC

A=1 |

While (A==0);

B=1;

While (B==0);

PC Print A;

PC Example

P1 P2 P3
A=1; While (A==0); While (B==0);
B=1; Print A;
SC
A=1 |
While (A==0);
B=1;
While (B==0);
PC Print A;

* How many different outputs from P3
* For SC?
* For PC?

PC Example

P1 P2 P3

A=1: While (A==0); While (B==0);
B=1: Print A;

SC

While (A==0);
B=1; T

: f While (B==0);
R PC > Pnnt A;

* How many different outputs from P3
* For SC?
* For PC?

WO: Weak Ordering

WO: Weak Ordering

* Instructions are either “data” or “sync”

WO: Weak Ordering

* Instructions are either “data” or “sync”

* reordering reads and writes between sync ops ok

WO: Weak Ordering

* Instructions are either “data” or “sync”
* reordering reads and writes between sync ops ok
* Sync ops must be SC

WO: Weak Ordering

* Instructions are either “data” or “sync”
* reordering reads and writes between sync ops ok
* Sync ops must be SC

=

Sync

Read/Write....

Read/Write....
Read/Write....

Sync

WO: Weak Ordering

* Instructions are either “data” or “sync”
* reordering reads and writes between sync ops ok
* Sync ops must be SC

* Implementation:
* Use counters for outstanding ops
* Counter must be zero for sync to issue Sync
* No ops can issue until previous sync retires

Read/Write....

Read/Write....
Read/Write....

Sync

RC: Release Consistency

* Extends WO to richer taxonomy of sync and non-sync ops

* Two flavors:
* RCsc = special operations must be SC
* RCpc =2 special operations must be PC

shared Jul
/\. Read/'Write....
) i Read/Write....
ordinary }ec{ Read Write...
SVHc nSyYRcC

N

acquire release

Understanding How “Safety Nets” Work

e Post—wait synchronization

Initially, x =0, y = 0, dataReady =0

PO: P1:
1. Xx=5; 1. while(!dataReady);
2. dataReady = 1; 2. Y =X;

Understanding How “Safety Nets” Work

e Post—wait synchronization

Initially, x =0, y = 0, dataReady = 0

PO: P1:
1. Xx=5; 1. while(!dataReady);
2. dataReady = 1; 2. Y =X;

WO: Post-wait synchronization

Initially, x =0, y = 0, dataReady =0

PO:

X=5;
dataReady = 1;

st &x, #5
st.SYNC &dataReady, 1

P1:
1. while(!dataReady);
2. y=X;

P1:

1. L:1d.SYNC R1, &dataReady
2. sub R1, #1

3 bnz R1, L

4. |dR2, &x

WO: Post-wait synchronization

Initially, x =0, y = 0, dataReady =0

PO: P1:
1. X =b5; 1. while(!dataReady);
2. dataReady = 1; 2. y=X;
PO: P1:
1. st &x, #5 1. L:1d.SYNC R1, &dataReady
2. st.SYNC &dataReady, 1 2. sub R1, #1

3 bnz R1, L

4. |dR2, &x

WO: Post-wait synchronization

Initially, x =0, y = 0, dataReady =0

PO: P1:
1. X =b5; 1. while(!dataReady);
2. dataReady = 1; 2. y=X;
PO: P1:
1. st &x, #5 1. L:1d.SYNC R1, &dataReady
2. st.SYNC &dataReady, 1 2. sub R1, #1

3 bnz R1, L

4. |dR2, &x

WO: Post-wait synchronization

Initially, x =0, y = 0, dataReady =0

PO: P1:
1. X =b5; 1. while(!dataReady);
2. dataReady = 1; 2. y=X;
PO: P1:
1. st &x, #5 1. L:1d.SYNC R1, &dataReady
2. st.SYNC &dataReady, 1 2. sub R1, #1

3 bnz R1, L

4. 1d R2, &x

RC: Post-wait synchronization

Initially, x =0, y = 0, dataReady =0

PO:

X=5;
dataReady = 1;

st &x, #5
st.rel &dataReady, 1

P1:
1. while(!dataReady);
2. y=X;

P1:

1. L:ld.acqR1, &dataReady
2. sub R1, #1

3 bnz R1, L

4. |1dR2, &x

RC: Post-wait synchronization

Initially, x =0, y = 0, dataReady =0

PO: P1:
1. X =b5; 1. while(!dataReady);
2. dataReady = 1; 2. y=X;
PO: P1:
1. st &x, #5 1. L:ld.acqR1, &dataReady
2. st.rel &dataReady, 1 2. sub R1, #1

3 bnz R1, L

4. |1dR2, &x

RC: Post-wait synchronization

Initially, x =0, y = 0, dataReady =0

PO: P1:
1. X =b5; 1. while(!dataReady);
2. dataReady = 1; 2. y=X;
PO: P1:
1. st &x, #5 1. L:Id.acqR1, &dataReady
2. st.rel &dataReady, 1 2. sub R1, #1

3 bnz R1, L

4. |1dR2, &x

RC: Post-wait synchronization

Initially, x =0, y = 0, dataReady =0

PO: P1:
1. X =b5; 1. while(!dataReady);
2. dataReady = 1; 2. y=X;
PO: P1:
1. st &x, #5 1. L:Id.acqR1, &dataReady
2. st.rel &dataReady, 1 2. sub R1, #1

3 bnz R1, L

4. |1dR2, &x

RC: Post-wait synchronization

Initially, x =0, y = 0, dataReady =0

PO: P1:
1. X =b5; 1. while(!dataReady);
2. dataReady = 1; 2. y=X;
PO: P1:
1. st &x, #5 1. L:Id.acqR1, &dataReady
2. st.rel &dataReady, 1 2. sub R1, #1

3 bnz R1, L

4. 1d R2, &x

RC: Post-wait synchronization

Initially, x =0, y = 0, dataReady =0

PO: P1:
1. X =b5; 1. while(!dataReady);
2. dataReady = 1; 2. y=X;
PO: P1:
1. st &x, #5 1. L:Id.acqR1, &dataReady
2. st.rel &dataReady, 1 2. sub R1, #1

3 bnz R1, L

4. 1d R2, &x

Comparing Safety Net Usage

Exercise: SP-SC Queue

next(x):
1f(x == Q_size-1) return O;
else return x+1;

Q_get(data): Q_put(data):
t = Q tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
data = Q buf[t]; Q buf[h] = data:

Q_taill = next(t); Q_head = next(h);

Exercise: SP-SC Queue

next(x):
if(x == Q_size-1) return O;
else return x+1;

Q_get(data): Q_put(data):
t = Q tail; h = Q_head;
while(t == Q_head) while(next(h) == Q_tail)
data = Q_buf[t]: Qbuf[h] = data:

Q_taill = next(t); Q_head = next(h);

Questions?

	Slide 1: Memory Consistency
	Slide 2: Outline for Today
	Slide 3: Memory Consistency
	Slide 4: Memory Consistency
	Slide 5: Memory Consistency
	Slide 6: Consistency: Canonical Challenge
	Slide 7: Consistency: Canonical Challenge
	Slide 8: Consistency: Canonical Challenge
	Slide 9: Sequential Consistency
	Slide 10: Sequential Consistency
	Slide 11: Requirements for Sequential Consistency
	Slide 12: Requirements for Sequential Consistency
	Slide 13: Requirements for Sequential Consistency
	Slide 14: Requirements for Sequential Consistency
	Slide 15: Requirements for Sequential Consistency
	Slide 16: Sequential Consistency: Canonical Example
	Slide 17: Sequential Consistency: Canonical Example
	Slide 18: Sequential Consistency
	Slide 19: Sequential Consistency
	Slide 20: Sequential Consistency
	Slide 21: More Consistency Motivation
	Slide 22: More Consistency Motivation
	Slide 23: More Consistency Motivation
	Slide 24: Why Relax Consistency?
	Slide 25: Relaxed Consistency Models
	Slide 26: Relaxed Consistency Models
	Slide 27: Relaxed Consistency Models
	Slide 28: Relaxed Consistency Models
	Slide 29: Relaxed Consistency Models
	Slide 30: Relaxed Consistency Models
	Slide 31: Relaxed Consistency Models
	Slide 32: Relaxed Consistency Models
	Slide 33: Relaxed Consistency Models
	Slide 34: Some Key Consistency Models
	Slide 35: Another Good SC Exercise
	Slide 36: Another Good SC Exercise
	Slide 37: PC: Processor Consistency
	Slide 38: PC: Processor Consistency
	Slide 39: PC: Processor Consistency
	Slide 40: PC: Processor Consistency
	Slide 41: PC: Processor Consistency
	Slide 42: PC Example
	Slide 43: PC Example
	Slide 44: PC Example
	Slide 45: WO: Weak Ordering
	Slide 46: WO: Weak Ordering
	Slide 47: WO: Weak Ordering
	Slide 48: WO: Weak Ordering
	Slide 49: WO: Weak Ordering
	Slide 50: WO: Weak Ordering
	Slide 51: RC: Release Consistency
	Slide 52: Understanding How “Safety Nets” Work
	Slide 53: Understanding How “Safety Nets” Work
	Slide 54: WO: Post-wait synchronization
	Slide 55: WO: Post-wait synchronization
	Slide 56: WO: Post-wait synchronization
	Slide 57: WO: Post-wait synchronization
	Slide 58: RC: Post-wait synchronization
	Slide 59: RC: Post-wait synchronization
	Slide 60: RC: Post-wait synchronization
	Slide 61: RC: Post-wait synchronization
	Slide 62: RC: Post-wait synchronization
	Slide 63: RC: Post-wait synchronization
	Slide 64: Comparing Safety Net Usage
	Slide 65: Exercise: SP-SC Queue
	Slide 66: Exercise: SP-SC Queue
	Slide 67: Questions?

