
Memory
Consistency

Chris Rossbach

Outline for Today
• Questions?

• Administrivia
• Lab 3 looms large: Go go go!

• Agenda
• Memory Consistency

• Message Passing background

• Concurrency in Go

• Thoughts and guidance on Lab 3

• Acknowledgements: Rob Pike’s 2012 Go presentation is excellent, and I borrowed from it:
https://talks.golang.org/2012/concurrency.slide

Memory Consistency

3

Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave with multiple CPUs

• Ordering of reads and writes

3

Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave with multiple CPUs

• Ordering of reads and writes

• Memory Consistency != Cache Coherence
• Coherence: propagate updates to cached copies

• Invalidate vs. Update

• Coherence vs. Consistency?
• Coherence: ordering of ops. at a single location

• Consistency: ordering of ops. at multiple locations

3

Consistency: Canonical Challenge

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
 enter CS enter CS

4

Consistency: Canonical Challenge

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
 enter CS enter CS

4

Can both P1 and P2 wind up in the
critical section at the same time?

Consistency: Canonical Challenge

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
 enter CS enter CS

4

Can both P1 and P2 wind up in the
critical section at the same time?Write Buffers

• P_0 write → queue op in write buffer, proceed
• P_0 read → look in write buffer,
• P_(x != 0) read → old value: write buffer hasn’t drained

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor

• Operations on each processor
are totally ordered in the
sequence and respect program
order for each processor

P1 P2 P3 Pn…

Memory

5

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor

• Operations on each processor
are totally ordered in the
sequence and respect program
order for each processor

P1 P2 P3 Pn…

Memory

5

Trying to mimic Uniprocessor semantics:
• Memory operations occur:

• One at a time
• In program order

• Read returns value of last write

Requirements for Sequential Consistency

6

Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

6

Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs

• Subsequent reads must not return value of a write until propagated to all

• Note: write atomicity → property of schedule: writes appear atomic

6

Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs

• Subsequent reads must not return value of a write until propagated to all

• Note: write atomicity → property of schedule: writes appear atomic

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

6

Requirements for Sequential Consistency
• Program Order

• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs

• Subsequent reads must not return value of a write until propagated to all

• Note: write atomicity → property of schedule: writes appear atomic

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

6

Disadvantages:

• Difficult to implement!
• Coherence to (e.g.) write buffers is hard

• Sacrifices many potential optimizations
• Hardware (cache) and software (compiler)
• Major performance hit

Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
 enter CS enter CS

7

Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
 enter CS enter CS

7

Can both P1 and P2 wind up in the
critical section at the same time?

In an SC system NO

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

Sequential Consistency

• weaker than strict/strong consistency
• All operations are executed in some sequential order

• each process issues operations in program order

• Any valid interleaving is allowed

• All agree on the same interleaving

• Each process preserves its program order

• Why is this weaker than strict/strong?

• Nothing is said about “most recent write”

More Consistency Motivation

Initially, A = B = 0
How many possible final values of register1?

P1 P2 P3

A = 1
 if (A == 1)
 B = 1
 if (B == 1)
 register1 = A

9

More Consistency Motivation

Initially, A = B = 0
How many possible final values of register1?

P1 P2 P3

A = 1
 if (A == 1)
 B = 1
 if (B == 1)
 register1 = A

9

Key issue:
• P2 and P3 may not see writes to A, B in the same order
• Implication: P3 can see B == 1, but A == 0 which is incorrect
• Wait! Why would this happen?

More Consistency Motivation

Initially, A = B = 0
How many possible final values of register1?

P1 P2 P3

A = 1
 if (A == 1)
 B = 1
 if (B == 1)
 register1 = A

9

Key issue:
• P2 and P3 may not see writes to A, B in the same order
• Implication: P3 can see B == 1, but A == 0 which is incorrect
• Wait! Why would this happen?

Sources of re-ordering:
• Post-retirement store queues
• Load queues
• O-o-O instruction processing
• Non-Uniform topologies
• Compiler optimizations

Consistency:
Each “flavor” is some combination of
allowed/supported optimizations

Why Relax Consistency?
• Motivation, originally

• Allow in-order processors to overlap store latency with other work

• “Other work” depends on loads, so loads bypass stores using a store queue

• PC (processor consistency), SPARC TSO, IBM/370

• Just relax read-to-write program order requirement

• Subsequently

• Hide latency of one store with latency of other stores

• Stores to be performed OOO with respect to each other

• Breaks SC even further

• This led to definition of SPARC PSO/RMO, WO, PowerPC WC, Itanium

• What’s the problem with relaxed consistency?

• Shared memory programs can break if not written for specific cons. model

Relaxed Consistency Models

11

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W → W; R → R/W

11

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W → W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

11

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W → W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W → W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W → W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

static inline void arch_write_lock(arch_rwlock_t *rw) {
 asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
 "jz 1f\n"
 "call __write_lock_failed\n\t"
 "1:\n"
 ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS) : "memory"); }

x86

https://elixir.bootlin.com/linux/v3.13/C/ident/arch_write_lock
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_rwlock_t
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/volatile
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PREFIX
https://elixir.bootlin.com/linux/v3.13/C/ident/WRITE_LOCK_SUB
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PTR_REG
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/write
https://elixir.bootlin.com/linux/v3.13/C/ident/RW_LOCK_BIAS

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W → W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W → W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

static inline unsigned long
__arch_spin_trylock(arch_spinlock_t *lock)
{
 unsigned long tmp, token;
 token = LOCK_TOKEN;
 __asm__ __volatile__(
 "1: " PPC_LWARX(%0,0,%2,1) "\n\
 cmpwi 0,%0,0\n\
 bne- 2f\n\
 stwcx. %1,0,%2\n\
 bne- 1b\n"
 PPC_ACQUIRE_BARRIER
 "2:“ : "=&r" (tmp)
 : "r" (token), "r" (&lock->slock)
 : "cr0", "memory");
 return tmp;
} PowerPC

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W → W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

11

Some Key Consistency Models
TSO: Total Store Order

• Stores are totally ordered, reads not

• Differs from PC by allowing early reads of processor’s own writes

PC: Processor consistency

• Writes from processor always respect program order

• Different processors may see different interleavings from different processors

RC: Release Consistency

• Key insight: only synchronization references need to be ordered

• Hence, relax memory for all other references
• Enable high-performance OOO implementation

• Programmer labels synchronization references
• Hardware must carefully order these labeled references

• Labeling schemes:
• Explicit synchronization ops (acquire/release)
• Memory fence or memory barrier ops:

• All preceding ops must finish before following ones begin

Another Good SC Exercise

P0:
1. x = 1;
2. y = 1;

Initially, x = 0, y = 0

P1:
1. a = y;
2. b = x;

What final values of (a, b) are possible under SC?

Another Good SC Exercise

P0:
1. x = 1;
2. y = 1;

Initially, x = 0, y = 0

P1:
1. a = y;
2. b = x;

What final values of (a, b) are possible under SC?

(0, 0), (0, 1), (1, 1)

Not 1, 0

PC: Processor Consistency
• Writes from a single processor are received by all other processors in

the order they were issued

• Writes from different processors may be seen in a different order by
different processors

• Key idea:
• reflect reality of networks

• latency between nodes may be different

PC: Processor Consistency
• Writes from a single processor are received by all other processors in

the order they were issued

• Writes from different processors may be seen in a different order by
different processors

• Key idea:
• reflect reality of networks

• latency between nodes may be different

P0

P1

P2

P3

PC: Processor Consistency
• Writes from a single processor are received by all other processors in

the order they were issued

• Writes from different processors may be seen in a different order by
different processors

• Key idea:
• reflect reality of networks

• latency between nodes may be different

P0

P1

P2

P3

1. P1 sees P0’s writes in P0 order
2. P1 sees P2’s writes in P2 order
3. Same for P3
4. P3 may see different

interleavings of P0, P2 writes
than P1 observes

PC: Processor Consistency
• Writes from a single processor are received by all other processors in

the order they were issued

• Writes from different processors may be seen in a different order by
different processors

• Key idea:
• reflect reality of networks

• latency between nodes may be different

P0

P1

P2

P3

1. P1 sees P0’s writes in P0 order
2. P1 sees P2’s writes in P2 order
3. Same for P3
4. P3 may see different

interleavings of P0, P2 writes
than P1 observes

W: a, b, c W: d, e, f

PC: Processor Consistency
• Writes from a single processor are received by all other processors in

the order they were issued

• Writes from different processors may be seen in a different order by
different processors

• Key idea:
• reflect reality of networks

• latency between nodes may be different

P0

P1

P2

P3

1. P1 sees P0’s writes in P0 order
2. P1 sees P2’s writes in P2 order
3. Same for P3
4. P3 may see different

interleavings of P0, P2 writes
than P1 observes

W: a, b, c W: d, e, f

R: a, b, c, d, e, f R: d, e, f, a, b, c

PC Example

PC Example

• How many different outputs from P3
• For SC?

• For PC?

PC Example

• How many different outputs from P3
• For SC?

• For PC?

PC Implementation:
• Store Queues Drain in Order
• Loads check Store Queue to

“read own writes”

WO: Weak Ordering

WO: Weak Ordering

• Instructions are either “data” or “sync”

WO: Weak Ordering

• Instructions are either “data” or “sync”

• reordering reads and writes between sync ops ok

WO: Weak Ordering

• Instructions are either “data” or “sync”

• reordering reads and writes between sync ops ok

• Sync ops must be SC

WO: Weak Ordering

• Instructions are either “data” or “sync”

• reordering reads and writes between sync ops ok

• Sync ops must be SC

WO: Weak Ordering

• Instructions are either “data” or “sync”

• reordering reads and writes between sync ops ok

• Sync ops must be SC

• Implementation:
• Use counters for outstanding ops

• Counter must be zero for sync to issue

• No ops can issue until previous sync retires

RC: Release Consistency

• Extends WO to richer taxonomy of sync and non-sync ops

• Two flavors:
• RCsc → special operations must be SC

• RCpc → special operations must be PC

Understanding How “Safety Nets” Work

• Post—wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

Understanding How “Safety Nets” Work

• Post—wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

• In SC, this “just works”
• In PC, this works for 2

processors
• In WO, RC, this requires fences

WO: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.SYNC &dataReady, 1

P1:
1. L: ld.SYNC R1, &dataReady
2. sub R1, #1
3. bnz R1, L
4. ld R2, &x

WO: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.SYNC &dataReady, 1

P1:
1. L: ld.SYNC R1, &dataReady
2. sub R1, #1
3. bnz R1, L
4. ld R2, &x

• SYNC is a fence:
• all previous memory ops complete before SYNC
• No subsequent memory ops issue until after SYNC

WO: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.SYNC &dataReady, 1

P1:
1. L: ld.SYNC R1, &dataReady
2. sub R1, #1
3. bnz R1, L
4. ld R2, &x

• SYNC is a fence:
• all previous memory ops complete before SYNC
• No subsequent memory ops issue until after SYNC

Does SYNC require communication with other processors?

WO: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.SYNC &dataReady, 1

P1:
1. L: ld.SYNC R1, &dataReady
2. sub R1, #1
3. bnz R1, L
4. ld R2, &x

• SYNC is a fence:
• all previous memory ops complete before SYNC
• No subsequent memory ops issue until after SYNC

Does SYNC require communication with other processors?

No. SYNC ensures no one can see W(dataReady) -> W(x) by
forcing st &x to complete before st &dataReady issues

RC: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.rel &dataReady, 1

P1:
1. L: ld.acq R1, &dataReady
2. sub R1, #1
3. bnz R1, L
4. ld R2, &x

RC: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.rel &dataReady, 1

P1:
1. L: ld.acq R1, &dataReady
2. sub R1, #1
3. bnz R1, L
4. ld R2, &x

• rel → all previous memory ops must complete before
• acq → no subsequent memory can ops issue until after

RC: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.rel &dataReady, 1

P1:
1. L: ld.acq R1, &dataReady
2. sub R1, #1
3. bnz R1, L
4. ld R2, &x

• rel → all previous memory ops must complete before
• acq → no subsequent memory can ops issue until after

Does acq/rel require communication with other processors?

RC: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.rel &dataReady, 1

P1:
1. L: ld.acq R1, &dataReady
2. sub R1, #1
3. bnz R1, L
4. ld R2, &x

• rel → all previous memory ops must complete before
• acq → no subsequent memory can ops issue until after

Does acq/rel require communication with other processors?

No. rel ensures no one can see W(dataReady) -> W(x)

RC: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.rel &dataReady, 1

P1:
1. L: ld.acq R1, &dataReady
2. sub R1, #1
3. bnz R1, L
4. ld R2, &x

• rel → all previous memory ops must complete before
• acq → no subsequent memory can ops issue until after

Does acq/rel require communication with other processors?

No. rel ensures no one can see W(dataReady) -> W(x)

Why do we need ld.acq on P1.1?

RC: Post-wait synchronization

P0:
1. x = 5;
2. dataReady = 1;

Initially, x = 0, y = 0, dataReady = 0

P1:
1. while(!dataReady);
2. y = x;

P0:
1. st &x, #5
2. st.rel &dataReady, 1

P1:
1. L: ld.acq R1, &dataReady
2. sub R1, #1
3. bnz R1, L
4. ld R2, &x

• rel → all previous memory ops must complete before
• acq → no subsequent memory can ops issue until after

Does acq/rel require communication with other processors?

No. rel ensures no one can see W(dataReady) -> W(x)

Why do we need ld.acq on P1.1?

So that P1.4 can’t execute before P1.1 completes

Comparing Safety Net Usage

Exercise: SP-SC Queue

next(x):
 if(x == Q_size-1) return 0;
 else return x+1;

Q_get(data): Q_put(data):
 t = Q_tail; h = Q_head;
 while(t == Q_head) while(next(h) == Q_tail)
 ; ;
 data = Q_buf[t]; Q_buf[h] = data;
 Q_tail = next(t); Q_head = next(h);

Exercise: SP-SC Queue

next(x):
 if(x == Q_size-1) return 0;
 else return x+1;

Q_get(data): Q_put(data):
 t = Q_tail; h = Q_head;
 while(t == Q_head) while(next(h) == Q_tail)
 ; ;
 data = Q_buf[t]; Q_buf[h] = data;
 Q_tail = next(t); Q_head = next(h);

1. Q_head is last write in Q_put, so Q_get
never gets “ahead”.

2. *single* p,c only (as advertised)
3. Requires ??? before setting Q head
4. Devil in the details of “wait”
5. No lock → “optimistic”

Questions?

	Slide 1: Memory Consistency
	Slide 2: Outline for Today
	Slide 3: Memory Consistency
	Slide 4: Memory Consistency
	Slide 5: Memory Consistency
	Slide 6: Consistency: Canonical Challenge
	Slide 7: Consistency: Canonical Challenge
	Slide 8: Consistency: Canonical Challenge
	Slide 9: Sequential Consistency
	Slide 10: Sequential Consistency
	Slide 11: Requirements for Sequential Consistency
	Slide 12: Requirements for Sequential Consistency
	Slide 13: Requirements for Sequential Consistency
	Slide 14: Requirements for Sequential Consistency
	Slide 15: Requirements for Sequential Consistency
	Slide 16: Sequential Consistency: Canonical Example
	Slide 17: Sequential Consistency: Canonical Example
	Slide 18: Sequential Consistency
	Slide 19: Sequential Consistency
	Slide 20: Sequential Consistency
	Slide 21: More Consistency Motivation
	Slide 22: More Consistency Motivation
	Slide 23: More Consistency Motivation
	Slide 24: Why Relax Consistency?
	Slide 25: Relaxed Consistency Models
	Slide 26: Relaxed Consistency Models
	Slide 27: Relaxed Consistency Models
	Slide 28: Relaxed Consistency Models
	Slide 29: Relaxed Consistency Models
	Slide 30: Relaxed Consistency Models
	Slide 31: Relaxed Consistency Models
	Slide 32: Relaxed Consistency Models
	Slide 33: Relaxed Consistency Models
	Slide 34: Some Key Consistency Models
	Slide 35: Another Good SC Exercise
	Slide 36: Another Good SC Exercise
	Slide 37: PC: Processor Consistency
	Slide 38: PC: Processor Consistency
	Slide 39: PC: Processor Consistency
	Slide 40: PC: Processor Consistency
	Slide 41: PC: Processor Consistency
	Slide 42: PC Example
	Slide 43: PC Example
	Slide 44: PC Example
	Slide 45: WO: Weak Ordering
	Slide 46: WO: Weak Ordering
	Slide 47: WO: Weak Ordering
	Slide 48: WO: Weak Ordering
	Slide 49: WO: Weak Ordering
	Slide 50: WO: Weak Ordering
	Slide 51: RC: Release Consistency
	Slide 52: Understanding How “Safety Nets” Work
	Slide 53: Understanding How “Safety Nets” Work
	Slide 54: WO: Post-wait synchronization
	Slide 55: WO: Post-wait synchronization
	Slide 56: WO: Post-wait synchronization
	Slide 57: WO: Post-wait synchronization
	Slide 58: RC: Post-wait synchronization
	Slide 59: RC: Post-wait synchronization
	Slide 60: RC: Post-wait synchronization
	Slide 61: RC: Post-wait synchronization
	Slide 62: RC: Post-wait synchronization
	Slide 63: RC: Post-wait synchronization
	Slide 64: Comparing Safety Net Usage
	Slide 65: Exercise: SP-SC Queue
	Slide 66: Exercise: SP-SC Queue
	Slide 67: Questions?

